

Fake base stations in 5G networks

Valtteri Niemi NATO SET-247, Helsinki 8 May 2017

Outline

- What is 5G?
- What is a fake base station?
- Fake base station attacks in LTE (4G)
- Countermeasures planned for 5G
- Conclusions

5G service dimensions (3GPP)

5G service requirements (3GPP)

- User experienced data rate up to Gbps.
- User peak data rate at tens of Gbps;
- The whole traffic volume at Tbps/ km².
- Very low latency for user experienced data exchange (~1 ms).

Selected services

Application	Average End User Throughput	Latency (end-to-end)	Latency (over the air)
High Definition Video 8K (streaming)	< 100 Mbps (DL) [7]	< 1 s [8]	< 200 ms
High Definition Video (conversational)	< 10 Mbps [7] (DL/UL)	< 150 ms [8]	< 30 ms
Cloud Computer Games with 4K 3D graphics – Low Latency Applications	< 50 Mbps (DL/UL) [9] (UL is needed for multiplayer game computation in user device)	< 7.5 ms (10 times less than in [8] for real time games)	< 1.5 ms

5G key technologies

- Cloud computing
- Software-defined networking (SDN)
- Network function virtualization (NFV)
- (massive) Internet of Things
- Machine-to-machine communications
- Critical communications
- Network slicing

5G key technologies

- Cloud computing
- Software-defined networking (SDN)
- Network function virtualization (NFV)
- (massive) Internet of Things
- Machine-to-machine communications
- Critical communications
- Network slicing
- All have implications on security !

Schedule

GSM security protocol

Mutual authentication in 3G

- There are three entities involved:
 - Home network HN (AuC)
 - Serving network SN (VLR/SGSN)
 - Mobile station MS (USIM)
- Executed whenever SN decides
- The idea: SN checks MS's identity (as in GSM) and MS checks that SN has *authorization* from HN
- A *master key K* is shared between MS and HN
- GSM-like *challenge-response* in *user-to-network* authentication
- Network proves its authorization by giving a token AUTN which is protected by K and contains a sequence number SQN

Identity and location privacy

- Key feature in mobile systems since GSM
- Protection against *passive* adversaries:
 - *Temporary* identity is allocated over *encrypted* channel

Active attack

- A *false* element masquerades
 - as a base station towards terminal
 - as a terminal towards network
- Objectives of the attacker:
 - eavesdropping
 - stealing of connection
 - manipulating data

Active attack

- A *false* element masquerades
 - as a base station towards terminal
 - as a terminal towards network
- Objectives of the attacker:
 - eavesdropping
 - stealing of connection
 - manipulating data

IMSI catchers

The Washington Post

Locations in Washington where the Crytophone detected "suspicious activity" that may indicate the presence of a surveillance device known as an "IMSI catcher." (ESD, IntegriCell)

A German company called GSMK recently came out with the CryptoPhone, which for \$3,500 can allegedly sense mobile surveillance technology. But there is some skepticism over the accuracy of its tracking. The Washington Post takes a ride to the Russian embassy to see the phone in action. (Alice Li/The Washington Post)

Dirtboxes on a Plane | How the Justice Department spies from the sky

Planes equipped with fake cellphone-tower devices or 'dirtboxes' can scan thousands of cellphones looking for a suspect. 2 Non-suspects' cellphones are 'let go' and the dirtbox focuses on gathering information from the target. 3 The plane moves to another position to detect signal strength and location... ...and the system can use that information to find the suspect within three meters, or within a specific room in a building.

Our experiments with fake base stations have been reported in:

Practical attacks against Privacy and Availability in 4G/LTE Mobile Communication Systems

Altaf Shaik & Jean Pierre Seifert TU Berlin & T-Labs Ravishankar Borgaonkar Oxford University N. Asokan Aalto & Uni. of Helsinki Valtteri Niemi Uni. of Helsinki

23 February 2016 NDSS 2016 San Diego USA

Experimental set-up (~1 k\$)

Precise location using trilateration or GPS !

Measurement/RLF report

- Two rogue eNodeBs for RLF
- eNodeB1 triggers RL failure: disconnects mobile
- eNodeB2 then requests RLF report from mobile

Semi-Passive : determine tracking area & cell ID

- VoLTE calls: Mapping GUTIs to phone number
 - ✓ 10 silent calls to victim's number
 - ✓ High priority → paging to entire tracking area(TA)
 - Passive sniffer in a TA
- Social identities: Mapping GUTIs to Social Network IDs
 - ✓ E.g., 10 Facebook messages, whatsapp/viber
 - ✓ Low priority → Smart paging to a last seen cell
 - ✓ Passive sniffer in a cell

DoS Attacks

Exploiting specification vulnerability in EMM protocol!

- Downgrade to non-LTE network services (2G/3G)
- Deny all services (2G/3G/LTE)
- Deny selected services (block incoming calls)
- Persistent DoS
- Requires reboot/SIM re-insertion

Identity protection in 2G/3G/4G/5G

Attacker type		2G	3G	4G	5G
Attacker is outside RAN	Passive	Yes	Yes	Yes	Yes?
	IMSI catcher	No	No	No	Yes?
	MitM	No	Yes	Yes	Yes?
RAN=Attacker	Passive	No	No	No	No?
	Active	No	No	No	No?

Methods to prevent IMSI catchers

- Second layer of *pseudonyms*
 - Shared with home network operator
 - But requires keeping synchronized state with every user
 - Could look like IMSI → would work also in *legacy* networks (backwards compatibility)
- User identity is encrypted by network *public key* in the connection set-up
 - But some sort of PKI is needed
 - Not backwards compatible

Pseudonym-based approach can be backward compatible: van den Broek, Verdult and de Ruiter, CCS 2015; Khan and Mitchell, SSR 2015.

- The pseudonym looks like IMSI. There is a non-changing part (pointing to the correct home network) and the changing part P that is in the form of MSIN, 9-10 decimal digits (< 40b).
- 2. RAND carries Enc(P'), the encryption of next pseudo P'
- 3. Decryption of P' is done by the USIM.

ME-based variant (Ginzboorg, Niemi '16)

- The above designs require *new USIM*. But 5G ME that has a legacy 4G USIM is also a likely scenario in 5G.
- The combination of 5G USIM + legacy ME is not very important in 5G; to get benefits from 5G, a new ME is likely to be required.
- → design that *does not require changes to* USIM, but *requires changes to ME* could be used in 5G.
 - Pseudonyms encrypted with a key available in ME
 - AMF indicates RAND contains encrypted pseudonym

Summary of different options for enhancing user identity privacy in 5G

	Public- or group- key based approach	Generic pseudonym- based approach	USIM-based pseudonyms	ME-based pseudonyms				
Changes needed in:								
USIM	NO	NO	YES	NO				
ME	YES	YES	NO	YES				
Serving Network	YES	YES	NO	NO				
Home Network	YES	YES	YES	YES				
Protection given in:								
legacy 3G/4G	NO	NO	YES	YES				
networks								
5G networks	YES	YES	YES	YES				

Conclusions

- Fake base stations can be used in GSM/3G/LTE
 - Identity and location tracking
 - Targeted denial of service
- Semi-passive attacks are also possible
- 5G is planned to defend better against fake base station attacks
- But:
 - Semi-passive attacks (may) still work
 - Downgrade to 4G (may) still enable the attacks

Thanks!